Randomized Block Coordinate Descent for Online and Stochastic Optimization
نویسندگان
چکیده
Two types of low cost-per-iteration gradient descent methods have been extensively studied in parallel. One is online or stochastic gradient descent ( OGD/SGD), and the other is randomzied coordinate descent (RBCD). In this paper, we combine the two types of methods together and propose online randomized block coordinate descent (ORBCD). At each iteration, ORBCD only computes the partial gradient of one block coordinate of one mini-batch samples. ORBCD is well suited for the composite minimization problem where one function is the average of the losses of a large number of samples and the other is a simple regularizer defined on high dimensional variables. We show that the iteration complexity of ORBCD has the same order as OGD or SGD. For strongly convex functions, by reducing the variance of stochastic gradients, we show that ORBCD can converge at a geometric rate in expectation, matching the convergence rate of SGD with variance reduction and RBCD.
منابع مشابه
Randomized Block Subgradient Methods for Convex Nonsmooth and Stochastic Optimization
Block coordinate descent methods and stochastic subgradient methods have been extensively studied in optimization and machine learning. By combining randomized block sampling with stochastic subgradient methods based on dual averaging ([22, 36]), we present stochastic block dual averaging (SBDA)—a novel class of block subgradient methods for convex nonsmooth and stochastic optimization. SBDA re...
متن کاملar X iv : 1 30 9 . 22 49 v 1 [ m at h . O C ] 9 S ep 2 01 3 STOCHASTIC BLOCK MIRROR DESCENT METHODS FOR NONSMOOTH AND STOCHASTIC OPTIMIZATION ∗
Abstract. In this paper, we present a new stochastic algorithm, namely the stochastic block mirror descent (SBMD) method for solving large-scale nonsmooth and stochastic optimization problems. The basic idea of this algorithm is to incorporate the block-coordinate decomposition and an incremental block averaging scheme into the classic (stochastic) mirror-descent method, in order to significant...
متن کاملStochastic Block Mirror Descent Methods for Nonsmooth and Stochastic Optimization
In this paper, we present a new stochastic algorithm, namely the stochastic block mirror descent (SBMD) method for solving large-scale nonsmooth and stochastic optimization problems. The basic idea of this algorithm is to incorporate the block-coordinate decomposition and an incremental block averaging scheme into the classic (stochastic) mirror-descent method, in order to significantly reduce ...
متن کاملAccelerated Mini-batch Randomized Block Coordinate Descent Method
We consider regularized empirical risk minimization problems. In particular, we minimize the sum of a smooth empirical risk function and a nonsmooth regularization function. When the regularization function is block separable, we can solve the minimization problems in a randomized block coordinate descent (RBCD) manner. Existing RBCD methods usually decrease the objective value by exploiting th...
متن کاملLarge-scale randomized-coordinate descent methods with non-separable linear constraints
We develop randomized block coordinate descent (CD) methods for linearly constrained convex optimization. Unlike other large-scale CD methods, we do not assume the constraints to be separable, but allow them be coupled linearly. To our knowledge, ours is the first CD method that allows linear coupling constraints, without making the global iteration complexity have an exponential dependence on ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1407.0107 شماره
صفحات -
تاریخ انتشار 2014